Search results for "Homotopy category"
showing 7 items of 7 documents
A note on conjugation involutions on homotopy complex projective spaces
1986
A fuzzification of the category of M-valued L-topological spaces
2004
[EN] A fuzzy category is a certain superstructure over an ordinary category in which ”potential” objects and ”potential” morphisms could be such to a certain degree. The aim of this paper is to introduce a fuzzy category FTOP(L,M) extending the category TOP(L,M) of M-valued L- topological spaces which in its turn is an extension of the category TOP(L) of L-fuzzy topological spaces in Kubiak-Sostak’s sense. Basic properties of the fuzzy category FTOP(L,M) and its objects are studied.
Categorical action of the extended braid group of affine type $A$
2017
Using a quiver algebra of a cyclic quiver, we construct a faithful categorical action of the extended braid group of affine type A on its bounded homotopy category of finitely generated projective modules. The algebra is trigraded and we identify the trigraded dimensions of the space of morphisms of this category with intersection numbers coming from the topological origin of the group.
Homotopy limits for 2-categories
2008
AbstractWe study homotopy limits for 2-categories using the theory of Quillen model categories. In order to do so, we establish the existence of projective and injective model structures on diagram 2-categories. Using these results, we describe the homotopical behaviour not only of conical limits but also of weighted limits. Finally, pseudo-limits are related to homotopy limits.
Fixed point and homotopy results for mixed multi-valued mappings in 0-complete partial metric spaces*
2015
We give sufficient conditions for the existence of common fixed points for a pair of mixed multi-valued mappings in the setting of 0-complete partial metric spaces. An example is given to demonstrate the usefulness of our results over the existing results in metric spaces. Finally, we prove a homotopy theorem via fixed point results.
Weighted limits in simplicial homotopy theory
2010
Abstract By combining ideas of homotopical algebra and of enriched category theory, we explain how two classical formulas for homotopy colimits, one arising from the work of Quillen and one arising from the work of Bousfield and Kan, are instances of general formulas for the derived functor of the weighted colimit functor.
Beilinson Motives and Algebraic K-Theory
2019
Section 12 is a recollection on the basic results of stable homotopy theory of schemes, after Morel and Voevodsky. In particular, we recall the theory of orientations in a motivic cohomology theory. Section 13 is a recollection of the fundamental results on algebraic K-theory which we translate into results within stable homotopy theory of schemes. In particular, Quillen’s localization theorem is seen as an absolute purity theory for the K-theory spectrum. In Section 14, we introduce the fibred category of Beilinson motives as an appropriate Verdier quotient of the motivic stable homotopy category. Using the Adams filtration on K-theory, we prove that Beilinson motives have the properties o…